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SUMMARY

The theory of drag and 1ift is revisited starting with the integral
conservation laws of fluid mechanics., Many representations (some known
and some unknown) of drag and 1lift are derived in terms of far wake
properties, intermediate wake properties and surface loading. Although
the theoretical results are quite general, these representations are used
in the present report primarily to assess the drag efficiency of lifting
wings both CTOL and various out-of-plane configurations.

The drag-due-to-lift is separated into two major components that
reveal themselves quite naturally in the theory. The first and largest
component is the "induced" drag-due-to-1ift that 1is due to spanwise
variations of wing loading. It is a strong function of aspect ratio for a
CTOL wing or more generally the projection of the lifting elements on the
Trefftz plane. The first component is relatively independent of Reynolds
number or details of the wing section design or planform. For each
lifting configuration there is an optimal load distribution that yields
the minimum value of drag-due-to-lift against which the efficiency of a
particular design may be assessed. The second and much smaller component
of drag-due—-to-lift may be called "form" drag-due-to—lift. It is largely
independent of aspect ratio but strongly dependent on the details of the
wing section design, planform and Reynolds number. It is a result of wing
load variations in the chordwise direction.

For well designed high aspect ratio CTOL wings the two drag
components are to lowest order independent with only a weak interaction of
the order of the square of the drag coefficient (i.e., a percent or so of
wing drag). With modern design technology CTOL wings can be (and usually
are) designed with a drag-due-to-lift efficiency close to unity. Wing
tip—devices (winglets, feathers, sails, etc.) that have vertical
dimensions of the order of the wing chord can probably improve
drag-due-to—1lift efficiency by 10 or 15% if they are designed as an
integral part of the wing with the proper load on all lifting elements.
As add-on devices for a well designed CTOL wing they can be detrimental,
The largest increments of drag-due-to-1lift efficiency can be attained with
joined tip configurations and vertically separated lifting elements, It
is estimated that 25% improvements of wing drag efficiency can be obtained
without considering additional benefits that might be realized by improved
structural efficiency. It is strongly recommended that an integrated
aerodynamic/structural approach be taken in the design of or research on
future out-of-plane configuration.



1. INTRODUCTION

The resistance of bodies moving in a fluid medium (drag) is a subject of
considerable interest to the aircraft designer s0 much so that regular
symposia (national and international) are held to discuss the efficiency of
modern designs and exchange ideas on the relative merits of various drag
reducing devices (see Ref. 1, e.g.). For the modern CTOL airplane there is
almost equal partition of the total drag into form drag and drag-due-to-lift.
Drag research is usually focused on one or the other of these topics. Recent
efforts on the development of laminar flow airfoils (Ref. 1, papers of Saric
or Braslow and Fischer) and riblets (Ref. 1, paper by Bushnell) to reduce
turbulent skin friction are primarily concerned with the reduction of form
drag. We will see herein that a reduction of form drag (at least on a lifting
surface) also has a secondary benefit of reducing the drag-due-to-lift.

Research efforts on drag-due-to-lift have focused primarily on improved
wing efficiency. Planform optimization (in particular the tip design) has
held the center of attention (Ref. 2) since the advent of the Whitcomb winglet
(Ref. 3). Many devices both active and inactive have been proposed
(Refs. U4,5,6 & 7) as drag-due-to-lift reduction devices and many claims have
been made about fthe ability of these devices to reduce drag. The purpose of
this study is to assess these claims rationally and to pinpoint those areas of
research that could have the biggest payoff for both current CTOL and future
aircraft designs. The underlying theoretical principles that are absolutely
essential for attempting such a project are developed in Section 2. Much of
the theoretical discussion may sound familiar to the reader but to our
knowledge many of the theoretical relations between drag and wake vorticity
are fundamentally new. Also, the most important principle to be gleaned from
the multitude of theoretical formulas is the generalization of the notion of
an optimal drag-due-to—1lift for a given configuration. This idea has been
around since the development of 1lifting line theory although the "optimal
result" is often criticized because it is based on a linear theory. It must
be understood that the idea follows directly from the global conservation
principles of fluid mechanics revisited in Section 2. There is in a SsSense a
"Carnot Drag Efficiency" for a given lifting configuration whether it be the
CTOL wing, bi-wing, box-wing, a wing with winglets or what have you. It is
against this optimal efficiency that we assess the various drag reduction
devices in Section 3.

Finally we remark that the general theory can be used to wunify and
provide more rational definitions of some of the traditional drag components,
For example, it is customary to consider the wing tip shape to have an
influence on the drag-due-to-lift or in particular the "induced drag." On the
other hand the drag associated with the wing-fuselage junction 1is termed
"interference drag" and a whole new set of design principles have evolved to
combat this drag component when in fact it is fundamentally of the same origin
as induced drag; i.e., variation of the load in the cross stream direction
Wwith the production of strong axial vorticity. With a more unified viewpoint
the emphasis on wing tip design can perhaps be put into better perspective as
only one component of a totally integrated design both aerodynamic and
structural. The biggest payoff in the future may well be in the design of




configurations that eliminate all unnecessary cross stream load variations (a
strong case for the flying wing and joined tip configuration) in particular if
there are structural benefits to be realized.

In this study we have deliberately omitted any detailed considerations or
evaluation of active devices such as tip blowing, propellers, etc. The
lifting configurations of this study do not exchange mass, momentum or energy
at their boundary so that drag efficiency can be measured in terms of entropy
production of the airframe for a required amount of lift. If part of the
powerplant energy or auxiliary energy 1is used to alter the flow over the
lifting elements then the drag becomes difficult if not impossible to separate
from the powered thrust. Efficiency must then be measured in terms of total
power requirements (including all auxiliary blowing) for a given 1lift. While
this can and must be done to evaluate active devices we have concentrated on
the efficiency of inactive lifting elements herein, A natural and worthwhile
follow on to the present study would be to revise the basic formulation of
Section 2 to include mass, momentum and energy exchange at all surfaces and so
integrate the powerplant and auxiliary blowing devices into the aerodynamic
evaluation.




NOMENCLATURE

A b2/S, aspect ratio (or angular momentum in half control volume)
b wing span
e(y) chord distribution of wing planform

cq(y) section drag distribution

cés average wing section drag coefficient

Cp flat plate skin friction coefficient

™ section 1ift curve slope

CD D/S-q,, drag coefficient based on area S of lifting surface

CD- drag associated with wake cross flow kinetic energy (induced
1 drag-due-to~-1lift) see (2.3.28)

CDO drag in absence of lift

CL L/8-q,, lift coefficient

CLa total lift curve slope

D I-?, drag, see (2.1.4) and (2.1.6)

e energy/unit mass (or wing efficient factor, see (2.3.31))

E total energy in control volume see (2.1.1)

f(x,y) wing thickness distribution, see (2.4.3)
F resultant force, see (2.1.4)

g(x,y) wing camber and twist distribution, see (2.4.3)

H h+v%/2, total enthalpy

k section drag-due-to-lift factor, see (2.4.17 and 2.4.18)

K wing total drag-due—-to-lift factor, see (2.4.15 and 2.4.16)
Ke form drag-due-to-lift factor, see (4.2.)

K; induced drag-due-to-lift factor, see (4.2)

L lift, see (2.1.4 and 2.1.5)
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fall

integral scale of wake vorticity, see (2.3.27)
fraction of wing leading edge that is separated, see (2.5.5)
total mass in control volume see (2.1.1)

Mach number at infinity

static fluid pressure

p+p v2/2, total head pressure

total momentum in control volume, see (2.1.1)

heat flux vector

gas constant, see (2.2.1)

Reynolds number

entropy/unit mass

total entropy in control volume, see (2.1.)
reference area of wing

time

Trefftz plane (or temperature)

half Trefftz plane

free stream velocity in x—direction, see Figure 2.1
normal component of velocity on a surface with normal n
(u,v,w) velocity components

magnitude of velocity in the Trefftz plane

average circulation velocity, see (2.4.24)

(x,y,z) cartesian coordinates, see Figure 2.1
vortex span, see (2.3.4)

angle of attack (geometric)

measure of wing max camber or twist

wake displacement thickness, see (2.5.9)



A difference pressure coefficient or load, see (2.4.5)

As S-S,

£ measure of wing max thickness

Y ratio of specific heats, see (2.2.1)
r(r) circulation distribution in wake

Tg total vorticity (circulation) in half Trefftz plane see (2.3.3)
Ag see (2.5.4)

H fluid viscosity

p mass density

P free stream density

o mean pressure coefficient, see (2.4.4)
% viscous stress tensor

$ stream function, see (2.3.13)

5 curl V, vorticity




2. FUNDAMENTAL THEORY

2.1 Integral Conservation Laws

Consider a lifting body (airplane) fixed in a fluid that moves in the
positive x direction at speed u, as shown in Figure2.1l. We further consider a
cylindrical control voclume V that encloses the body and is bounded by an
upstream y-z plane T, and a downstream (Trefftz) plane T at an arbitrary
location x. The cylingr'ical boundary is denoted by C and the surface of the
airplane by S. Also n is the unit normal on the outer boundary (positive out
of V) and on S (positive into V). We consider the conservation of mass,
linear and angular momentum, energy and entropy (also total head) and their
relation to the resultant force that acts on the airplane:

M = /pdV Mass

v
P = fp;;d\l Linear Momentum
v
A = I-?(prdv Angular Momentum (Half Control Volume)
V72
E = /p(e+v2/2)dv Energy
v

& = /pst Entropy
v

(2.1.1)
The compressible viscous equations of fluid motion are:

ﬁ+divp¢=o
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3p3
3t

> >
+div (pvww +p I -7) =0

> >

>
é% p(e+v2/2) + div [p?(e+v2/2) + p? - TV + q] =0 (2.1.2)

We compute the time rate of change of each of the global quantities
defined in (2.1.1) and assume that in steady state operation the time average
rate of change 1is =zero. The time average of all subsequent equations is
implied although we have omitted any explicit notation to indicate averages.
We assume that the velocity and heat flux through S are zero. Also we assume

that the Reynolds number is very large so that contributions of viscous
stresses on the outer control boundary may sensibly be neglected. The
conservation of mass leads to the following integral equation for the outflow
through C and T,

Po /vnds = /(pwuw-pu)ds (2.1.3)
o T

a result that is used in all subsequent equations. The conservation of linear
momentum leads to the following representation of the resultant force on S:
> 3 »
F=- }{ (pn—1sn)ds Resultant Force
S

=1ip + L with 1.2 (2.1.4)

]
(@]

where D is the total drag due to pressure and viscous stresses and by
definition is the projection of the resultgnt force on the free streanm
direction. The transverse force is denoted by L and if the x—-z plane is a
plane of symmetry, then £ = KL where L is the lift. We assume a plane of
symmetry in the following development. The Trefftz plane representations of
the lift and drag are given by
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L=~ /puwds Lift (2.1.5)
T

D = [p~p * pu(u,u)ldS Drag (2.1.6)
T

while the surface definitions of 1ift and drag are given by

>
L =- /(p Kl = KeT-0)dS (2.1.7)
S
R < 35
D=-_J(p1ien~- 1e1en)ds (2.1.8)
s

The conservation of angular momentum in one half of the control volume
leads to an expression for the root bending moment; i.e.,

M= / pu 1-(Xxv)ds + f(p—pm)-z dxdz (2.1.9)
Ty /2 y=0
Symmetry
plane
while M is defined in terms of surface forces by

-)
M= - / ds[1-xxnp - 1-xx(7+n)] (2.1.10)
S1/2

where the subscript (1/2) denotes one half of the wing, the Trefftz plane or
control volume bounded by the symmetry plane y = O.

The conservation of total energy combined with the assumption of an
adiabatic surface S leads to the conclusion that the total enthalpy deficit in
the Trefftz plane is zero; i.e.,




/pu(Hw—H)dS =0 (2.1.11)
T

where

H = h+v2/2 (Total Enthalpy) (2.1.12)

Conservation of entropy combined with Fourier's law of internal heat
conduction leads to the following result for entropy flux through the Trefftz
plane:

f :- > 2
pu(s—s_)ds = plreerad v, (5’1“-91) @ 20 (2.1.13)

T v

We remark that if the fluid is incompressible the last statement can be
rewritten as a flux of total head loss; 1i.e.,

fu(Pm-P)dS = u [|$|2 av 2 0 (2.1.14)

T v
where
P=p + pvi/2 (Total Head) (2.1.15)

and » = curly is the vorticity.

2.2 Trefftz Plane Representations of the Drag and Lift

The objective of this section is to use the global conservation 1laws in
conjunction with other principles of wing theory, Betz type wake roll-up
theory, etc. to derive a variety of representations of the drag and lift from
which solid conclusions can be drawn and which can be used to assess proposed
methods for reducing drag, in particular drag-due-to-1ift of conventional take
off and land (CTOL) aircraft.

11




First we consider the fundamental Trefftz plane relation for the drag
(2.1.6) and introduce the following perfect gas relations:

Y

b _ (B )1 -As/R
hoo

O
8

1

o . <£_>Y*‘ o~As/R (2.2.1)

and assume that total enthalply is conserved on every streamline through the
Trefftz plane. This is an assumption consistent with the global conservation
of total enthalpy (2.1.11). We also note that total enthalpy is conserved
across shock waves and adiabatic boundary layers (at least for unit Prandtl
number ), so that the assumption does not seem very severe. We further assume
that in the Trefftz plane.

u_—u
— < <1

v/a, < <1
As/R < < 1 (2.2.2)

With the foregoing assumptions, we obtain the following expression for the
drag
aiAS ve N (um—u)2
D=p, JAS| — + =+ - (1-M§) —— (2.2.3)

Another useful expression for the drag can be obtained if we introduce
the definition of total head

12




2 2
P=p+ 8, 0% (2.2.4)

2 2

The drag formula is
2
2 plug~u)
D = /ds [Pm—- P+ p—‘;‘L - —-—°°2 ] (2.2.5)
T

where the entropy rise in (2.2.3) has been replaced by total head loss in
(2.2.5).

With the incompressible expression for total head flux (2.1.14) we can
derive yet another drag formula

D = iL_/r|$|2dV +
®v

We remark that a similar but somewhat messier expression can be obtained for
compressible flow when the expression (2.1.13) for the entropy flux is
substituted into (2.2.3).

-
2 p(um—u)2
fﬂ—*v - — (1 - l) (P~P) |dS  (2.2.6)
T 2 2 U,

Several important conclusions can be drawn from the above integral
expressions. First we note that the streamwise location of the Trefftz plane
is arbitrary. Thus we can differentiate (2.2.6) with respect to x. Since the
drag is independent of x, we get

(um—-u)2
4 _[ vk . (1 - 1)(?;?) ds
dx 2 2 Uy

T

- - u—“ f|$|2 v 50 . (2.2.7)
® T

Thus the kinetic energy of the wake cross flow decays in proportion to the
local enstrophy (both mean and turbulent) at station x. Both theoretical
estimates and observations indicate that several miles are required for wake
decay. Thus the kinetic energy and the total head loss are more or less

13
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constant (adiabatic invariants) for many spans behind a high Reynolds number
CTOL aircraft. This conclusion is in fact the justification for a Trefftz

plane representation of classical induced drag and the conservation principles
that underly the Betz wake roll-up theory.

Since all kinetic energy integrals over the Trefftz plane vanish as x
tends to infinity we can write three equivalent expressions for the drag:

. 2 As
D=L1m_[maw-Y-§dS

Xro

= Lim f(Pw—P)dS

X>oo
T

. .2
= Lim ulw]® av (2.2.8)
u
V o]

X>o

Conclusion:

All drag, by whatever name we may attach to it, is ultimately realized as
an entropy rise or total head loss in the far wake. Also it is proportional
to the volume integral of the squared vorticity (enstrophy). For an inviscid
non-conducting fluid the drag is zero.

Next we introduce an approximation that can be justified for high aspect
ratio CTOL aircraft. We omit details of the theoretical argument and resort
to the following heuristic approach. Compare the drag given by (2.1.6) and
(2.2.5). A major component of the drag ala (2.1.6) is due to the momentum
deficit (u,-u) and in particular the profile drag (in absence of lift)

D
Cp = 0 . JdS u <1 _u )
0 Seq, S u, u,
4{;8 ‘/.ds ;
u u
= 1 - - = - = 2.2.
S u, S <1 U, ( %)
T T




The profile drag coefficient is of order (.01) or less and for a "good" wing
is primarily due to the linear term in (2.2.7). It seems plausible that we
can argue that the quadratic term is of order (10*4) or a few counts of drag
coefficient. From an aircraft operational standpoint a few counts of drag is
not negligible. However it is safe to say that neither the present theory or
any proposed theory, CFD or laboratory experiment can claim 1% accuracy at
least in the near future. For this reason we omit all terms in the analysis
that are of the order of the drag coefficient squared and thus all terms that
are quadratic in the axial momentum defect. The resulting approximate drag
formulas are summarized below?

2
D = f<9-‘-£-l- + P;P) ds

T
- fﬂ ds + l[|$|2dv (2.2.10)
2 ug
T v

Also we have the following auxiliary relations that follow from (2.1.6):

f(Pw—-P)dS fpum(um—u)ds

T T

- |&|%av (2.2.11)
=y

and

>
[(p;p)ds = .[%—'—' ds (2.2.12)

T T

It is consistent with these formulae to write the 1lift (2.1.5) and root
bending moment (2.1.9) in the linearized forms

15
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L = - pu, IWdS (2.2.13)

T

and

M = pgu, [ 1.(XxV)ds + ,[ (p~p,)*z dxdy (2.2.14)
T1/2 y=0

2.3 Drag and Lift in Terms of Vorticity

The importance of vorticity in the representation and understanding of
the origin of drag and 1ift cannot be overemphasized. We have already noted
that the drag can be expressed in terms of the volume integral over all space
of the squared vorticity. In this section we reduce the various drag and lift
formulae derived above to integral moments and correlations of vorticity in
the Trefftz plane. The relations so obtained form the basis for a large part
of the accumulated practical understanding of drag-due-to-lift.

First we consider linear moments of vorticity in the Trefftz plane with
the foliowing definitions: '

o = W _ 3V
X Yy 92
o = QY _ 3W
Y 3z dx
_ 9V _ au
w, = % 37 (2.3.1)

The integral of Wy, Wy Or w, over the entire Trefftz plane 1is zero. Thus we

consider the linear mOments. For example

de Yuy = = [wds - -k (2.3.2)

T T Pallen




Wwhere we have used (2.2.13) to obtain the representation in terms of 1lift.
Now define the total vorticity in the half plane by

Iy = f w, dS (2.3.3)

T1/2

and the lateral separation (distance between centers) of axial vorticity by

v = [ymxds (2.3.4)
To
T
Then (2.3.2) may be written as
L = paunlg+y (2.3.5)

the famous Kutta Joukowsky formula for 1lift. Also

[z“’x =fvds =0 (2.3.6)
T T

since we have postulated a plane of symmetry with no net side force.

Now consider transverse moments of wy and w,. We get

fds Zewy = [(um—u)ds - d—i zwdS

T T T

de yo, = - _[(u ~wyas + L J yuas (2.3.7)
z @ dx

T T T

The last term in each of the above expressions is assumed to be zerc. All
vorticity moments that exist must be adiabatic invariants (with respect to X)
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in the intermediate wake region where Trefftz plane arguments are valid. Thus
we have an expression for the momentum loss associated with the axial flow
that is the first major component of the drag (see (2.2.10) and (2.2.11)). We

write
ﬁPm—P)dS = fpwuw(um—-u)ds

T T

Poly /dS Z wy

T

~ Py de Yeuw,

T

pcnuoo
2

dS(Zwy—wa) (2.3.8)
T

For the moment we refrain from giving this drag component a name.

The second moments of axial vorticity are related to the angular momentum
and root bending moment. We calculate

] (y2+22)wx ds = -2 f (yw-zv)ds - fzzwdz (2.3.9)

T1/2 Ty /0 Lo
y=0

and note that the first term is proportional to the flux of angular momentum

through the half Trefftz plane. But from (2.2.14), we have for the root
bending moment

M=opu, ,/ (yw—zv)dS + f (p~p,)*z dxdz (2.3.10)
Ty /2 y=0

Combining the last two equations, we get




[
P Pl
M= - wzm f (Y2+22)wxd8 - m2 / z%w dz
T “w
1/2 g

y

+ .[(p-p.,,)-z dxdz (2.3.11)
y=0

For high aspect ratio configurations, the integrals over y = 0 in (2.3.11) can
be omitted. The root bending moment is the flux of angular momentum and also

the polar moment of the wake axial vorticity distribution; i.e.;

M2 pu, f (yw-zv)dS

Ti/2
Pl
- - 2”/ (y2+2%)w,ds (2.3.12)
Tys2

The last result is a fundamental building block in the Betz theory of wake
roll up (Ref. 8).

The final moment of vogticity that we consider is nonlinear. Introduce
the vector stream function Y such that

Vecurl § with div ¢ = 0 (2.3.13)
Then we get
2 2 2
3"y %y 7Y
wy = - X, 2: - ;‘ (2.3.14)
aye oz 9%

Based on the notion of adiabatic invariance of wake properties we neglect the
last term in (2.3.14) and write

19
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= = wy (2.3.15)

Also, to the same order of approximation the velocit)} components in the
Trefftz plane are given by

dy oY
vy = —% , w=—-—§-§-(§ (2.3.16)

Now compute

2 2
3%y 97y
[wxwxdx = - /wx X, —Xas

T T 3}’2 3Z2
= /(v2+w2)ds (2.3.17)
T

with an integration by parts. But we can also solve (2.3.15) in the Trefftz
plane to get

’ 1 f 2 > 2>
b =" oo e tn |x-y| 4%y (2.3.18)
T

Now combine (2.3.17) and (2.3.18) and use (2.2.12) to obtain the following
expression for that component of drag that is proportional to kinetic energy
of the cross flow in the Trefftz plane:

[(p;p)ds

T T

]
'\‘
2,

&

]

=
- = fwx(i)dzi fwx(ﬁ)dz?r wn|X-¥| (2.3.19)
T T



Thus, the 1ift, root bending moment and the above component of drag depend
only on the streamwise component of vorticity. The first two are linearly
dependent on wy While the drag 1is quadratically dependent on Wy For
convenience we summarize the key formula of this section below:

Summary

I
S

=

[o%

w

~ |

i
~1|_,

L = pmumro-y Ty - yw,ds
T2 T
Puls
M= - —- [ (y2+z2)mxds
T2
2
ﬁp;p)ds - /1‘21— ds
T T
Pe
- - w, (£)a%% fwx(s}’)dz?; wn|%-¥|
T T
f(Pw—P)dS = pUe /(uw-u)ds
T T
Pt [ .
- - 2.3.20
> (Zwy yw,)dS 3

T

The total drag is the sum of the last two relations in (2.3.20) and is
expressed entirely in terms of integral properties of the vorticity in the

Trefftz plane; 1i.e.,

poouoo/ Pe / 2> f 2> > >
D=— / (zuy=ywp)ds - o= / w, dX - J w,d“y an|x-y|  (2.3.21)

21
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To conclude this section we present formula for the drag in terms of
properties of a typical rolled up vortex wake., Within a few spans downstream
of a lifting wing the axial and azimuthal vorticity assume a more or less
radial distribution about two well defined centers that are separated by the
parameter y given in (2.3.20). The situation is illustrated in Figure 2. The
integrals in (2.3.21) can be expressed in terms of we(r) (the aximuthal
vorticity associated with the axial momentum defect) and wx(r), the axial or
streamwise vorticity. We note that

y = ; + r cos 6 Z =1r sin o

wy = wg sin o w, = = wg COS 8 (2.3.22)

Thus

poouoo
(P,—P)dS 3 (zwy-ywz)ds

T

~3

A
Palle )f rdr de[rwesin29+(§+r cos 8) r cos e]
0

= PulUy 2T ] wg redr (2.3.23)
0

Introduce the following definitions of total azimuthal vorticity Ty and the
radial spread Pyt

re = — ]r’zwedr‘ (2.3.24)
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Thus, we obtain for (2.3.23)

[(Pm—P)dS = Palelg ry (2.3.25)
T

Thus the drag associated with the total head loss can be expressed in the

rolled—-up region of the Trefftz plane by a formula that is directly analogous
to the Kutta Joukowski formula for 1lift.

The second term in the expression for drag (2.3.21) can also be expressed
in terms of the total circulation associated with lift and an integral length
scale that is a measure of the spread of the axial vorticity. We get

2
2 pl
pv 0 -
= dS = — n y/}%
T/‘Z 27 Y%

112, =
= 5 = wn y/ 8, (2.3.26)
2npuy ¥

where the integral scale, 20, is given by the solution of the following
equation:

[+
0
T dr _ (1 - _F_)Qs =/ _I‘_<1 - _F_>d_'“ (2.3.27)
Ip r o/ v 4 To fo/ r

where I'(r) is the circulation distribution in the rolled up vortex. If the

drag associated with the cross flow kinetic energy is reduced to a drag
coefficient, CD , based on the total area S. Then
i

02 P _ /4
_ L (2) on (1_ (2.3.28)
mA y 9,0 .
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For a wing that is elliptically loaded, it is well known that the expression
in brackets is exactly unity with

2
O _ g~ m/t (2.3.29)

o<
]

==
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Thus we have derived an expression for the "induced drag" including a formula
for the efficiency factor. That is, if

o2
C. = - (2.3.30)
Di TAe T
then
(1) =
e = -_— . (2‘3'31)
b (/e

We will give estimates of the induced drag based on the above formula. This
is the first major component of drag-due-to—-lift. It is not the whole story,
however. The drag associated with the total head loss is also dependent on
the 1lift as we will demonstrate below.

2.4 Drag and Lift in Terms of Surface Pressure

In the last two section we have concentrated on representations of drag
and 1ift in the Trefftz plane. It 1is informative to supplement the above
results with near field surface representations of drag and 1lift. We
concentrate on the contribution of the pressure to lift and drag of a wing.
From (2.1.7) and (2.1.8) we have

L = —_/1&-3 ds (2.4.1)

D = - _/pi'-ﬁ ds (Pressure drag) (2.4.2)
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Now suppose that the wing has upper and lower surfaces defined by

S: zt = * eaﬁx,y) + 8g(x,y) - ox (2.4.3)
Thickness Camger Angie of attack
& Twist

Also, we define mean and difference pressure coefficients and lift and drag
coefficients as follows:

1t Cp * %
=3 (p7+p )/q, = - Mean Pressure Coefficient (2.4.4)
a = (p7-p")/ " - ¢’ Di
=P -pJ)/q, = Cy = C, Difference Pressure Coefficient  (2.4.5)
c == (2.4.6)
Qp*S
c, = =2 (2.4.7)
Qe *S

Now assume that A and o are regular functions of a and § and expand C, to
first order and Cp to second order in a and §. The results are:

2
9°¢ dxdy 2
Cy(a,8) = C + C, + €'17ﬁ<———> f, —=1Jla
D DO LQ aa2 0 X S
S
oA dxdy |
- - ==L + 2
o\ —/](3“)08’( 8 E/](
S S
2
. e[f(u) p 4xdy _ﬂ 3_4) g, T g2 (2.4.8)
362 0 X 3 a8 0 S
S S

2
0o ) ¢ 2K 4
9038 / X s




Cola@8) = O +a+Cp + (2.4.9)

with

d
Cp, = 2eff(o)0 £y —’é—dl (2.4.10)

S
oA dxdy
¢ == —== (2.4.11)
La -[/(30.)0 S
S
c, J/(@A) axdy (2.1.12)
5 \ 368 S
S 0

Many interesting results can be derived with (2.4.8) and its counterpart
that accounts for the drag due to the surface viscous stress. Here we want to
show the connection between drag and 1lift due to pressure for the simple case
of a wing with symmetric airfoil sections (zero camber). With § = 0, we get

2
Chla) =cp + (cp + eﬂ(i—g) £, P ) 2 (2.4.13)
0 o S 3%/ o S

CL(a) = CLa°a (2.”;1“)
or
Co(a) = Co + KeC? (2.4.15)
D Dy L 4.

with

2
Ko 1, /](M) fx.@ﬂ! (2.4.16)
CL, ¢? 2/ o 5
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The second term in (2.4.15) is of the same form as the induced drag formula
(2.3.29) and in fact if wWwe were clever enough to derive the pressure
distribution on the three dimensional wing to second order in o we c¢ould in
fact calculate the induced drag with (2.4.16). That would be a very difficult
task and is not necessary. The point of (2.4.16) is to illustrate sources of
drag-due-to—-1lift that are not contained in (2.3.29). The familiar "induced"
component of drag-due—-to-1ift 1is actually the drag due to the spanwise
variation of 1lift. It is the price we pay for flying a wing of finite span.
However even if the span is infinite and the load 1is uniform the drag of a
symmetric airfoil section varies quadratically with angle of attack and
therefore with the 1lift. The formula (2.4.15) can then be replaced with
section properties; 1i.e.,

cqla) = cdo + kc%

with

2
K = —— + £ ](9—9‘-> £, +dx (2.4.17)
¢ 0

The section profile drag-due-to-1ift is characterized by the parameter

dcd

2
dcl

kK = (2.4.18)

The second term in (2.4.17) (also in (2.4.13)) shows the effect of

thickness on drag-due—to-lift. If & tends to zero and the integral remains
bounded then

Lim k = Z_— = — % 0.16 Flat Plate Airfoil Section (2.4.19)

where 2¢ is the standard 1ift coefficient for a flat plate airfoil. On the
other hand, for a wide class of airfoil sections, k is at least an order of
magnitude smaller than 1/2w. In Table 1 we have calculated k for airfoil
section data from Abbott & VanDoenhoff (Ref. 9). The data are for sections
with standard leading edge roughness. In general k is about the same order of
magnitude as the profile drag coefficient; 1i.e., cdo = 0.01. For the thinner
sections k 1is somewhat greater than cdo' However, Hoerner (Ref. 10)




Table 1. Section Drag Due to Lift (Re = 106).
Airfoil dcd Airfoil dcd
Section — Section —_—

NACA de ; NACA de?
2
006 .013 64015 .01
009 .012 64018 .01
012 .013 64021 .019
63012 .011 64A010 .014
63015 .0094
63018 .0094 65006 .014
63A010 .0125 65015 .01
65018 .012
64006 .034 65021 .011
64009 .0147
64012 .012 Flat Plate | 1/27 =~ .159
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recommends that the parameter k be replaced by cdo in calculating section drag
due to lift. Also we note the experimental data in Ref. 10 (7-3, Fig. 4) that
shows the abrupt increase in k for the flat plate section. Clearly the
pressure force on a flat plate must be normal to the plate and that means a
drag for small a of the form

cdi = CZ'Q
But
o = g,/¢C = Co/2™W
'3 la A
S0 that
cs .
c =— or k-=1/2 2.4.,20
dl 2‘" il ( )

the same as (2.4.19).

It is well known, of course, that the large flat plate section drag is
due to the absence of leading edge suction. On the other hand if the
parameter k in (2.4.17) is calculated with exact two—dimensional airfoil
theory, the result is zero, even in the limit as e » 0 (the d'Alembert
paradox). The small experimental values for k in Table 1 indicate that
reasonably good potential flow is established over airfoil sections. The

above observations suggest a method for calculating the pressure contribution
to the section drag-due—-to-lift. We write

o= oy * Ag (2.4.21)

where ¢, is the mean pressure coefficient calculated with potential theory and
Ao is ghe difference between the true value and o¢,. Substitute (2.4.21) into

(2.4.17) and note that the potential part of the integral cancels the leading
term cz . Thus, we get
a

¢ 2
kK = —& / 3 Ag £, +dx (2.4.22)
c+Ccy o 90 0

The above formula is useful if the airfoil section has been properly designed




to avoid 1leading edge separation. Then the main contribution to section
drag-due-to-lift is the lack of pressure recovery over the aft part of the
airfoil and that in turn is due to the viscous boundary layer (Recall that all
drag and l1ift is due to viscosity).

In addition to the pressure contribution there is also a direct viscous
contribution to the section drag (see (2.1.8)). Following, Hoerner (Ref. 10,
6-11) we note that from the Kutta Joukowski formula for 1lift that there is an
average circulation velocity around an airfoil section; 1i.e.,

@ Co UgyeC
T = w ds wav°20 = -——é-—- (2.4,23)
airfoil
so that
W c
:?! = 7% Circulation velocity (2.4.24)

This circulation velocity adds to the velocity near the upper surface and
subtracts on the lower surface. Thus the skin friction drag can be written as

+ -
~ q q
Cq = cpef| — + =
d f ( a, qm‘>

=2 cp + _8_.03 (2.4.25)

where Cp is the flat plate skin friction drag coefficient. Thus the direct
viscous contribution to section drag—due—to-lift is
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kK, = — (2.4.26)

which result we may add to (2.4.20) to get

0
. a 1
Viscosity Pressure

For Reynolds numbers of order 106 or 107 the turbulent flat plate skin
friction coefficient is of order .002 to .003, so that the viscous
contribution to k is of order .00025 to .0004. Thus we conclude from the
experimental data (Table 1) that the main source of section drag-due-to-lift
is the lack of pressure recovery over the section trailing edge or absence of
leading edge suction. Both sources are a result of deviation of the surface
pressure from the ideal potential flow value. The above conclusion is valid
for turbulent airfoil sections. If laminar flow can be maintained on the
section and the boundary layer kept thin, then values of Kk considerably
smaller than 0.01 can be realized. This is a viable approach to reducing the
section drag-due-to-lift. Also we point out that we have completely ignored
the contribution of section camber in the foregoing discussion. With a
properly cambered section the effective k in our section drag formula can be
reduced to zero for c, measured from the optimum 1ift. The analytic results
needed to achieve the optimum can be deduced from (2.4.8) - a worthwhile task.

c 2
. - _85 . £ ] <3 A0> T (2.4.27)
c%‘ 30.2 0 ©

2.5 A Practical Wing - Drag Formula

We are now in a position to write a single expression for wing drag with
a useful decomposition of the drag-due—-to-1lift. For drag we write

D = f cq(y)+quec(y)+dy + Dy
Span
or

f cq(y)ec(y)dy + Cp (2.5.1)
Span L

wn|-

Cp =

where C, is the induced drag due to finite span (Section 2.3) and the
integral lmust account for the section drag that is independent of aspect




ratio. With the section drag results obtained in Section 2.4 we get

1
Cp = CDO + 3 / k(y)oc(y)-c% dy + CDi (2.5.2)
Span
on
Coho=Cpn + A, +—— )2 (2.5.3)
D DO S mAe L

where C, 1is the wing profile drag (at zero lift) and
0

S ,[ k(y)c§ec(y)dy
Span

A =
S 2
cg(y)ecly)dy

Span

It

15/ k(y)-c(y)dy (2.5.4)
Span

where we have used the typical section lift coefficient Cg = 2ma. We further
decompose (2.5.4) with our knowledge of k(y) obtained in the last section.
For most of the wing span k(y) can be replaced with the average section drag
coefficient. However, 1if a fraction of the leading edge (say zs/b) is
separated then k is about 1/2w for those sections. Thus, we can write

and for the wihg drag

'3
1
Cr 2 C + l-c"[('1 + -J—- <—§> + — Cr2 (2.5.5)
D Do “s 2t \Db (TAe |
LI_________l b
Section Induced
DDL DDL
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with

cé = average section profile drag coefficient
s
Qs/b = fraction of span that has a separated leading edge flow
A = aspect ratio
—\2
e = (% ) /zn(y/zo)”” (see (2.3.30)) (2.5.6)

The last formula is the basis for our evaluation in Section 3 of various
devices and techniques that have been proposed to reduce the drag-due-to-lift.

Before moving into the realm of drag estimation we call attention to the
close relationship between our basic drag formula (2.5.5) and the more formal
result (2.3.21) that expresses the drag in terms of Trefftz plane moments of
vorticity . Recall that the induced drag formula was derived quite rigorously
from the logarithmic correlation of axial shed vorticity in (2.3.21). Our
results for section drag were obtained with more heuristic arguments that were
based on the surface pressure representation of drag and a mixture of
experimental results. Actually, the first term in (2.3.21) is a direct
representation of the section drag in the Trefftz plan. To see this we
recall(see (2.3.8)) that the first term can be expressed in the form

Dg = pwuw[zwyds
T

or

2
CDs = Eg'T/“Zwde (2.5-7)

E

n

u

[+

[¢2]

-

/ dy/ dzez 2 (u—ugy)
9z
Span




~

/ §¥(y)dz (2.5.8)

Span

i

where

8:(y) =/ (1 - E“—)dz (2.5.9)

is the wake displacement thickness in a Trefttz plane sufficiently far
downstream that the difference between the wake momentum and displacement
thickness is small (i.e., several chords). We can further write for a
symmetric airfoil section

25%
8% = 8% + 135 el + Higher Order Terms
o 2 8a2 0

S0 that

Cn =
Dg

1
f 5gdy+§/

Span Span

win

2
2y c '
978%) 4y L (2.5.10)
3a2 C2

0 Ly

From the last relation we note that the section drag-due—-to—1ift is the direct
result of the second order increase of wake displacement (or momentum)
thickness with angle of attack. Clearly the wake thickness will increase
abruptly 1if the leading edge separates. Also, the wake thickness will
increase because of the enhanced adverse pressure gradient over the aft
section of the airfoil. Both of these effects are contained in the basic drag
formula (2.5.5). Also, it is worth noting that the section drag-due-to-lift
is primarily associated with the spanwise component of vorticity and hence
with the chordwise variation of the 1load. The familiar induced drag 1is
associated with the shed streamwise vorticity that is a direct result of
spanwise load variations. The expression "drag-due-to—1lift" is in fact a
misnomer. A more descriptive term would be "drag due to load variation".
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3. AN ASSESSMENT OF CONVENTIONAL DRAG-DUE-TO-LIFT
REDUCTION DEVICES AND TECHNIQUES

The purpose of this section is to quantitatively assess the relative
merits of various ideas that have Dbeen proposed to reduce drag-due—-to—-lift.
The objective is to draw attention to those areas where the biggest payoffs
might be, We focus initially on methods for CTOL wings and progress to out of
plane configurations in subsequent sections,

3.1 Planform Shape (Load variation on a Plane)

The CTOL wing planform 1is the most extensively studied (both
experimentally and theoretically) 1lifting configuration that has evolved in
the aeronautics industry. Because of 1its long history of engineering
development it has been "optimized" for all practical purposes. In fact we

can most easily illustrate the idea of an optimum configuration with the CTOL
wing.

It is well known that the induced drag of the CTOL wing is a minimum when
the load is elliptic. The induced drag coefficient is

Cy. = — (3.1.1)

This famous result is usually derived with lifting line theory — a linear high
aspect ratio approximation. Because of the approximations of the linear
theory one might question the validity of the induced drag result. However,
when the drag of "well designed" wings is compared to this result the
differences are of the order of a percent or so (e.g., see Figures 4 and 10,
Section 7-6 of Hoerner (Ref. 10). Even the drag of the delta wing and other
small aspect ratio configurations correlates reasonably well with the
theoretical minimum (e.g., see Figure 28, Section 7-17, Hoerner), as long as
the leading edge is profiled., The reason is that the theoretical result is
much more general than classical lifting line theory would indicate. In fact
it follows from the general drag formulas developed herein. For example with
(2.2.10) and (2.3.14) we note that if all near field total head loses are
neglected then the drag minimum can be expressed as

2
D 2 [p_\u._ ds Minimum Drag

2
T
P f 22 / 2> > >
= - — J w,d% Jwd%y n|x-y| (3.1.2)
Yo T X T X




independent of any other statements about lifting line theory. The 1ift also
is given quite generally by the formula

L = pmum/ymxds (3.1.3)
T

The minimization of (3.1.2) in the Trefftz plane subject to the constraint of
a given airplane 1ift 1leads directly to the famous induced drag formula
(3.1.1) for the CTOL wing or any other wing (even of small aspect ratio) whose
projection on the Trefftz plane is a straight line.

It is absolutely essential in any discussion of drag-due-to-lift to be
aware of the theoretical minimum that could be achieved if all near field
total head losses could be eliminated. The drag-due-to-1lift of the perfect
CTOL airplane would be the same as the ideal wing induced drag (3.1.1). Over
the years of CTOL airplane development the ideal induced drag fraction of
drag-due-to-1lift has increased as parasitic and interference sources of
drag-due-to-1lift have decreased. For example, the induced drag fraction of
the Me-109 was only 69% (Hoerner, p. 14-12). The total drag-due-to-lift at
optimum cruise is one half of the total drag, a direct result of the airplane
drag polar. There is still room for improvement in reducing parasitic and
interference sources of drag-due-to-lift. Innovative ideas for mating lifting
and non-lifting airplane components should be explored in current CTOL drag
research programs. However, the CTOL wing alone is a highly efficient drag
device, within a few percent of the theoretical minimum drag-due-to-lift if
good design practice is followed. The wing tip is an important element of the
overall wing design. However, the technology is available (Ref. 11) for
designing a CTOL wing tip with less than 0.5% of airplane drag (e.g., the
Boeing 757). The main point is that efforts to refine the CTOL wing induced
drag efficiencies are reaching a point of diminishing returns. Improvements
of the order of a fraction of a percent are about the best one can hope for.
If these improvements can be discovered, tested and implemented easily at the
airplane operational level, then they might be economical. A complete wing
redesign to achieve a half a percent drag reduction would be hard to justify.

Because the well designed CTOL wing is nearly optimal, we can argue that
small modifications to the trailing edge will have little or no effect on the
drag-due-to-1lift. It has been known for many years (Hoerner, p3-22, Fig. 4.2)
that an airfoil section with a slightly blunted trailing edge (= 0.4%
thickness) has a lower drag at finite 1ift then the same section with a sharp
trailing edge although the form drag is usually greater. With a sharp
trailing edge the upper surface separation line migrates forward with
increasing angle of attack starting at a very small value of 1lift; hence, the
nearly parabolic increase of section drag-due-to—lift. With a cut off
trailing edge the separation point is held at the cutoff edge to a much higher
angle of attack. The section drag rise with 1ift does not occur until some
lift coefficient above the design 1lift coefficient and hence the lower
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drag-due-to—-1ift. 1In terms of our drag formula (2.5.5)

1 s 1 2
Ch =Cp. * |ed *=\T) = ¢ J1.4
D Dy [ds 27 (b) ﬂAeJ L 3 )

this means that the term c*ds is virtually Zero and the overall wing
drag-due-to—lift 1is brought even closer to the theoretical optimum value.
These remarks apply equally to the use of serrated trailing edges. There is
in our opinion no fundamental mechanism for edge serrations to affect the
overall load distribution and the theoretical drag minimum. However, they can
perhaps be used effectively to maintain attached flow over the aft portion of
each wing section, reduce C*ds, and more closely achieve the optimum drag.

3.2 Out of Plane Tip Devices

We have discussed the CTOL wing as an example of a lifting configuration
that has been optimized for all practical purposes. The engineering
techniques required to achieve an optimal design have evolved over a period of
many years and for the most part are understood. If there is to be a
significant reduction (10% say) of wing drag-due-to-lift then it must come
from new wing concepts based on a deeper understanding of underlying
principles. Several concepts have surfaced over the past decade and deserve
to be considered seriously. The winglet, tip-feathers, and sails (Refs. 2,3,4
& 5) fall in the category of out-of-plane devices and must be assessed in
their own right. For each configuration there 1is a theoretical minimum
induced drag (a Carnot efficiency if you will). Each new design must be
evaluated by comparing the experimentally achieved drag to the theoretical
minimum, If the theoretical minimum drag for a selected configuration is less
than the minimum for a CTOL wing then there is an excellent chance of
designing a more efficient cruise wing. If the theoretical minimum is greater
then you will never do better than the CTOL wing although other factors may
dictate the new design. In this regard we are well aware that induced drag
efficiency is not the only number that dictates a wing design. However, in
the following we will discuss out-of-plane wing concepts primarily from the
point of view of reducing the theoretical minimum induced drag.

The basic principle of all out-of-plane devices is contained in the
simple formula (2.5.6) for the ideal wing efficiency; 1i.e.;

2 — o 1/k
e = (1) /%n (-Y—> (3.2.1)
b %,

where b is the wing span, y is the spanWwise distance between the shed lifting
vortex centers (vortex span) and Lo is the integral spread scale of the rolled
up vorticity. For the optimally loaded (elliptic) CTOL wing we have
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The integral spread scale is 6.7% of the span or about a mean aerodynamic
chord for an aspect ratio of & or 7. Roughly speaking, %, scales with the
difference between the wing span and vortex span (i.e., b-y). If the CTOL
wing tip is overloaded (rectangular, e.g.) the advantage of making y bigger
(it cannot exceed b) is offset by the diminished spread scale and the induced
drag becomes greater, However, if the 1lift induced tip vorticity can be
diffused vertically, the integral scale can in principal be controlled
independently of y as the tip is loaded. This is one way of explaining how
winglets, tip feathers, etc. can lead to a smaller value of wake Kinetic
energy and induced drag for the same circulation. It is the same principle
that explains the bi-wing or multi-wing. How much drag reduction can be
achieved? A calculation with minimum induced drag theory (e.g., Ref. 12,13 &
14) must be carried out to obtain a precise number. However, an estimate of
potential drag reduction can be made with (3.2.1).

In Figure 3.1 we have plotted the normalized integral spread scale zo/b
versus the vortex span y/b for constant values of the efficiency e. Point A
on the curve for e=1 is the conventional CTOL wing that is elliptically loaded
(3.2.2). For a given configuration the load distribution will determine a
unique point in Figure 3.1 and if the load distribution has been optimized the
largest value of e will be attained. As an example suppose that with a
suitable wing tip device the vortex span y/b is increased from w/4 to 0.89.
If the tip device maintains the same vortex integral scale as the CTOL wing
(2,/b = 0.067) then the efficiency can be increased by about 20% (e = 1.2 or
point B in Figure 3.1). To achieve this result the tip device would have to
have a vertical dimension of the order .067b and be optimally loaded. With a
tip device of only .037b the unit efficiency of the CTOL wing can be
maintained (point C in Figure 3.1). 1In general, if the wing can be 1loaded at
the tip so that y/b is increased, the size of a tip device to achieve a given
efficiency can be smaller. That is why the rectangular wing or any wing with
a high tip 1lift coefficient is a good candidate for a wing tip drag reducing
device (see Ref. 1, paper by Thomas).

By the same reasoning as above, we can see wWhy the addition of a tip
device on an optimally loaded CTOL wing will have a relatively smaller (or
perhaps no) effect than when placed on a highly loaded tip. If the vortex
span is held at w/4 then an integral scale of the order of 10% of the span
would be required to obtain a 20% reduction of the induced drag (Point D in
Figure 3.1). The required vertical dimensions of the tip device are much
greater than if the load is first distributed onto the tip (e.g. at Point B).
The main point is that tip devices will be most effective if they are designed
as an integral part of the overall wing design. If one is faced with the
problem of retrofitting an existing piece of hardware then it is essential to
acquire a knowledge of the bare wing tip load distribution before considering
a particular device. Otherwise you can end up with something worse than the
bare wing.
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The most comprehensive recent study of wing tip devices both in-plane and
out-of-plane is contained in Ref. 2. Much of what we have discussed above is
addressed therein with theoretical calculations and experiment. In terms of
wing induced drag efficiency the tip planform is a crucial factor in achieving
a good design as we have noted. Efficiencies slightly greater than unity can
be achieved with a swept back tip (see Figure 4 of Ref. 2 e.g.) (The parameter
Xe of Ref. 2 is the reciprocal of our factor e). Properly used, wing theory
w1}} dictate a good tip shape (see Ref. 11) What is more remarkable is that
the swept tip yields an (L/D)max of 22 with an induced drag efficiency of 1,02
(see Figure 27e of Ref. 2) at an aspect value of 7.05. A large soaring bird
with tip feathers fully extended has an (L/D)max of about 23 with an induced
drag efficiency of 0.87 and aspect ratio of 5 to 6, (Figure 27a of Ref. 2). A
wing that has the ability to get a higher maximum L/D without any induced drag
penalty is clearly a superior design. The swept tip or feathered tip can
maintain a load at higher angle of attack and for soaring or for tip control
that 1is an advantage. It may well be in the area of maximum lift or control
performance that most tip devices will prove their superiority over the CTOL
wing. Active tip devices might also be considered seriously in the control of
fighter type aircraft.

Also in Ref. 2, Figure 20, the author shows three out—-of-plane
configurations and their 1induced drag efficiencies. The results are
summarized in Figure 3.2. The first point of the example is that large out of
plane dimensions are required to realize the maximum benefit of the vorticity
diffusion effect. A 20% span vertical end plate does not seem 1like a
practical wing design. Also, the above example illustrates another important
point (or question) that must be kept in mind when comparing out—-of-plane tip
devices to the CTOL wing. A large benefit is calculated for the case of the
vertical end plate (42%). However, if the same end plate is used to extend
the wing span, an efficiency factor of 1.38 is calculated. In other words
turning 20% of the span up on a given wing only yields an efficiency factor e
= 1.029 or 2.9% improvement. It would seem more realistic to compare wings on
the basis of the length of the load line or wetted area. On the other hand if
a particular design is span limited for some reason (e.g., upper bound on root
bending moment, fixed keel draft on the 12 meter sailboat hull or fixed span
on the 15 meter sailplane) then it does make sense to add vertical devices to
increase the 1ift and drag performance of the original in-plane wing.

In summary, tip devices that are properly designed as an integral part of
a wing and not as an add-on have the potential of increasing induced drag
efficiency by 10 to 15% when out-of-plane dimensions are of the order of the
wing chord. These devices also have great potential for increasing the
maximum L/D and high lift performance in particular if they are developed as
active devices. 1In retrofitting existing hardware it is most important to

determine the tip loading before considering a tip device. A given device can

be detrimental when added on to a good CTOL wing. Finally we remark that the
rectangular wing tip can be improved with almost any sensible tip device.
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3.3 Joined Tip Configurations

The three out-of-plane examples included in the last section (Figure 3.2)
illustrate dramatically how drag efficiency can be improved with joined tips
(box-wing) or a multi-wing (bi-wing) configuration. This has been known, for
many decades (see Hoerner, Ref, 10, e.g.). To implement these devices
however, the structural weight and parasite drag penalty has been such as to
make their overall performance less than the conventional mono-wing
configuration. Recently, there has been a resurgence of interest in the
Joined tip configuration. According to Ref. 4, NASA Ames and NASA Dryden hope
to have the AD-1 aircraft converted and flying with a joined tip configuration
within two years. The advantages of this configuration are many fold at least
on paper. The primary advantage is the weight reduction that results from the
truss like Jjoined wing structure. The weight reduction is of course directly
reflected as a reduction of induced drag. The projection of the joined wing
on the Trefftz plane also has an induced drag efficiency that is superior to
that of the mono-wing. The main purpose of the following discussion is to
estimate the maximum practical induced drag benefit that could be expected
with a joined wing independent of the structural advantages on disadvantages.
We strongly recommend, however, that the integrated (synergistic)
structural/aerodynamic design approach be followed in practice (see comments
of Wolkovitch in Ref. 4).

For an absolute upper bound on what is attainable in the way of induced
drag efficiency the box-wing yields a factor of two when the upper and lower
lifting surfaces are separated by haf the span; i.e., e = 2 in our formula
(3.2.1). Whether this efficiency can be obtained in practice or whether the
box wing is a practical design is a separate (and important) issue. The
interference drag due to the four corners and whatever wing-fuselage joints
are required may be prohibitive. However, we can safely say that "whatever is
done", halving the induced drag efficiency of the CTOL wing is a good working
upper bound.

To obtain a more practical upper bound we present the results of a
minimum induced drag calculation for the joined wing. The result is obtained
as follows: Suppose that we consider the class of joined wings that have a
continuously turning load line of fixed length when projected on the Trefftz
plane. We ask what is the shape of the Trefftz plane projection that
minimizes the induced drag and what is the load distribution? The results are
presented in Figure 3.3. The shape of the wing as viewed from the Trefftz
plane is a flattened elliptical shape with a height of 0.19 of the span. The
induced drag efficiency, e, compared to a CTOL wing of span b is 1.25, a 25%
improvement. The load distribution varies continuously from the upper to
lower wing surface, passing through zero at the tips. The load is essentially
elliptic on the upper and lower sections when plotted against distance along
the load line.

The above example is only a glimpse of the power of minimum induced drag
theory in arriving at optimal joined tip and other configurations. If the
ground rules of the minimization process are changed by overall mission
requirements then a different configuration will be obtained. The calculated
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h=0.19b

Figure 3.3 - Optimal Joined Tip Wing (Projection on the Trefftz Plane).




25% reduction of induced drag is a good practical estimate of what can be
achieved in the way of improved wing efficiency with joined tips. We
reiterate that whether a particular minimum drag configuration is structurally
practical is a separate and important matter. The aerodynamicist must provide
the designer with a variety of choices and the computational tools to rapidly
evaluate the drag efficiency of each choice in an integrated design approach.

Final Remarks

In our assessment of drag-due—to—-lift reduction devices, we have focused
on the advantages and disadvantages of various in-plane and out-of-plane
lifting configurations in reducing the theoretical minimum drag. Furthermore,
we have stressed the idea that the true drag efficiency of a particular design
must be measured against the theoretical minimum. To conclude our discussion,
we want to emphasize a point that we have alluded to frequently but have not
addressed explicity in our discussion; i.e., that the real wing design
problem is to select the planform, section profile, tip shape, etc. to achieve
the theoretical minimum.

The computational tools are available for making that selection
intelligently (see Ref. 11). Once the Trefftz plane projection of the
configuration has been defined, minimum induced drag theory (Refs. 12,13 and
14) will yield the transverse load distribution on all lifting elements. The
second step is to use wing theory (potential flow) with the specified span
load distribution to determine the approximate planform that can support the
required load. Finally, some form of boundary layer theory must be used to
determine in detail whether the calculated potential flow and wing section
geometry are compatible; i.e., whether the flow remains attached over the
entire wing surface subject to the necessary chordwise load variation. The
final optimal configuration with respect to total cruise drag will require
several iterations between the applications of wing theory and boundary layer
theory and finally experiment. All tricks of the trade (e.g., tip shaping,
leading edge shaping, trailing edge modifications (including serrations), wash
in or wash out and surface treatment can and should be used to achieve a wing
efficiency as close as possible to the theoretical maximum. The CTOL wing is
an excellent example of design ingenuity (honed by experience) in achieving
this goal. The objective in the future should be to optimize the more viable
out—-of-plane configurations following the same procedures.
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4, CONCLUSIONS AND RECOMMENDATIONS

Fundamental relations for the drag and l1ift of a 1lifting configuration

are derived from the first principles (conservation laws) of fluid mechanics.
Many representations (some old and some new) of the fundamental forces are
derived in terms of far wake properties, intermediate wake properties and
surface loading. The main assumptions that underly the basic theoretical
results and conclusions are as follows:

1.

There is no mass, momentum or energy exchange at the surface of the
lifting configuration. Active drag reduction devices cannot be evaluated
with the formulas of this study.

The flow Reynolds number is at least 10°® or greater.

All configurations are in steady flight.

All configurations are spanwise symmetric.

Drag contributions of the order of the square of the drag coefficient (a
few counts) are neglected,

The most important conclusions of this study are summarized below:

1.

20

All drag is ultimately of viscous origin and is given by the total head
loss or entropy rise in the very far wake (see Egq. (2.2.8)).

In the intermediate wake region the drag (and 1ift) can be expressed quite
naturally in terms of vorticity moments and correlations in the Trefftz
plane (see Eq. (2.3.21). The first major component of drag is the polar
moment of the transverse vorticity that is produced Dby streamwise
variations of the surface load distribution. The second major component
is the logarithmic correlation of the axial or streamwise vorticity that
is produced by transverse variation of the load distribution.

On the surface of the body the drag and l1ift are given directly in terms
of the resultant pressure force and the resultant viscous force (see
Egs. (2.1.,2), (2.1.8) and Section 2.4).

For a high Reynolds number wing the drag and lift are regular functions of
the angle of attack so that the drag coefficient can be expressed in terms
of the lift coefficient (see Eq. (2.5.5); 1i.e.,

2
Cp = CDO + (Ke + Ky) Cf (4.2)

Both the form drag (CD ) and the form drag-due-to-lift (Kg¢) are functions
of Reynolds number and depend strongly on details of the wing section
design. The induced drag-due-to-lift (K ) is relatively independent of
Reynolds number and depends primarily on the Trefftz plane profile and




load variation.

The form and induced drag-due-to-1ift are positive and for a modern "well
designed" wing the form component is small (a few percent) compared to the
induced component. The theoretical minimum drag-due—-to-lift is given by
the classical induced drag component for each Trefftz plane profile
(e.g. Ki = 1/7A for the optial CTOL wing with elliptic load).

For high aspect ratio CTOL wings (A>6) the interaction between the form

and induced drag-due—to-lift is small of the order of the square of the
drag coefficient.

Based on the fundamental theoretical relations for drag we have
assessed the advantages and disadvantages of various drag-due-to-lift
reducing devices. The conclusions are as follows:

CTOL Wings. The well designed modern CTOL wing is nearly optimal with a

total drag-due—-to-lift within a percent or so of the theoretical minimum.

Improvements will be small and are best implemented at the operational
level. The profiled wing tip like that on the Boeing 757 accounts for
about 0.5% of airplane drag. The CTOL wing alone is not a fruitful
configuration for drag-due-to-lift reduction research.

Qut-of-Plane Tip Devices, Out of plane wing tip devices like winglets,
sails and feathers can reduce the drag-due-to-lift of a CTOL wing if the
wing and tip device are designed as an integral unit with the proper load
distribution on all 1lifting elements as required by minimum induced drag
theory. Highly tip loaded (i.e., improperly designed) CTOL wings are good
candidates for retrofitting with tip devices. The performance of a good
CTOL wing can be reduced with a tip device. With good outboard loading on
the primary wing, a tip device with vertical dimensions of the order of
the mean aerodynamic chord can probably achieve a 10 to 15% reduction of
the induced drag. Out-of-plane tip devices should definitely be a part of
drag-due—-to-1lift reduction research.

Joined-Tip-Configurations. Joined tip configurations offer the
possibility of a 25% (or even greater) reductions of drag-due-to-1lift
without considering the additional potential structural advantages.
Investigation of such configurations both aerodynamically and structurally
should be given a high priority in current drag-due-to-lift reduction
research,

Whether the problem is one of designing a CTOL wing, wing with tip
devices or Jjointed tips the guidelines for obtaining low drag are
established and reasonably well understood. We summarize our
recommendations for future drag-due-to-lift reduction research in terms of
the above single formula (4.1) of this section:

Drag-due-~te-1lift consists of two main parts 1) the classical induced drag
(Ki) that depends on the wing span load distribution for the particular
Trefftz plane projection and 2) the form drag-due-to-lift (Kg) that
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depends primarily on the chordwise load distribution independent of aspect
ratio., The first and largest component is more or less independent of
Reynolds number while the second component is highly dependent on Reynolds
number and details of the wing section design.

A fruitful area of drag-due-to—lift reduction research is the following:
Based on realistic design scenarios (i.e., bounds on wing 1lift, span,
vertical dimensions, root bending moment, etc.) postulate classes of
Trefftz plane configuration and calculate with minimum induced drag theory
the optimal configuration and the required load distribution within each
class, Define a common rational basis for comparing the induced drag for
configuration of the same class and between classes, e.g., use the total
wetted area and/or length of load bearing elements in the Trefftz plane.
Document these configurations in a systematic way for future design
tradeoff studies.

A second and follow up area of research would be to use wing load theory
(potential theory) in conjunction with boundary layer theory to define the
best planform and section profile design for each of the configurations
obtained in Step 2. The objective of this step is to minimize the form
drag Cpy and profile drag-due-to-lift (K¢) in (4.1).

Total airplane drag-due—-to-1ift reduction is also a profitable area for
research. So—-called interference drag between airplane components is only
another name for unnecessary drag-due—-to load variations. The underlying
principles summarized in this report are equally valid and relevant for
attacking problems of total airplane drag reduction.

Finally we reiterate the recommendation in the 1last paragraph of the
introduction. The main assumption of this study is the restricted
boundary condition at the surface. The theory of Section 2 must be
revised to include mass, momentum and energy exchange. Optimal or even
ideal blown configurations or active surface configurations can then be
synthesized and current ideas can be evaluated rationally.
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